By Kimberly Rivers

The squid landing docks at the Port of Hueneme are quiet. In recent years the summer months were busy with dozens of boats coming and going, offloading millions of pounds of California Market Squid into tanks for export to Asia for processing and then returning to be served up for fried calamari or other dishes.

The local squid fishery declined from 2014-16 in response to a warm water mass called “the blob.” The name was coined by Nicholas Bond, Alaska-based research scientist with the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the University of Washington. Blob, as expected, is a reference to the amorphous monster from the 1958 horror classic film.

Typically ocean temperatures 50 miles off the Southern California coast are “very much in step” with the ocean temperatures at the equator, said Clarissa Anderson, executive director of the Southern California Coastal Ocean Observing System (SCCOOS). The system she manages is part of a network of systems monitoring ocean conditions worldwide. “Then they diverge when the blob hit in 2014 and only come back together again for the big 2016 El Niño, then diverge again. This may be related to the perturbation caused by the blob temp anomaly that lasted so long.”

The blob was a “large anomalously warm” area of the Pacific Ocean, “spread over a broad area, resulting in major ecosystem impacts,” said Anderson.

Anderson and Bond monitor different sensor systems in their regions and look for anomalies in the oceans. She said the blob mostly impacted the area for about two years and prevented mixing of water, caused the drought, wildfires,” and decimated the Dungeness crab industry along the Pacific Coast.

When asked whether we are seeing a blob 2.0, causing a decline in the squid fishery in the area, she said people may be “quick to call it that in homage to the past blob,” but she is not certain it’s a new blob, but might be that the blob never really left.

“We don’t have a threshold for when to call it a blob,” said Anderson. “I don’t know if we are having an actual true marine heat wave.”

Warm water prevents the normal upwelling of cool water from deeper water that contains important nutrients and food sources for species that live at shallower depths. “We have seen a lot of upwelling in the spring,” she said, noting that much of the ocean is looking like “business as usual” but with a “warmer background level of water.”

That warmer background water could reveal a trend, part of what is needed to identify a true anomaly, which would indicate something serious occurring. To confirm that, Anderson said data must be “compared to a background baseline,” and an increase in temperature is only significant when it “deviates from a background norm.” Reviewing temperatures each day is not enough; current day temps must be run against past data over time to identify a true change or trend showing temperature increase.  

After reviewing the most recent days’ data, Anderson said that there appears to be “anomalously warm water off the Central Coast.” She emphasized the data set covered “the climatology period 2007 to the present.” It does show a red blob-shaped area about 250 kilometers off the Central Coast that is four degrees higher than the normal range of temperatures.

In 2010, well before the blob arrived, squid season in the Ventura area brought in 126 million pounds of squid valued at $33.7 million. By 2016, total poundage dropped by a third to 34 million pounds valued at $16.8 million.

2018 data shows a continued declining trend totaling 27.6 million pounds valued at $13.6 million. Ventura Harbor and Port Hueneme landings for squid in 2018 were valued at $6.7 million and $6.8 million respectively, less than half of the 2010 value. Data and values are according to records held by the California Department of Fish and Wildlife.

“The good news is that squid are pretty resilient,” said Diane Pleschner-Steele, executive director of California Wetfish Producers Association (CWPA). The species does prefer cooler water, but is showing an ability to move and find food. “And squid are very cyclical . . . We can’t afford to lose our squid fisheries . . . and a number of species are going to be hit hard by ocean acidification and climate change.”

In terms of how warm water will impact market squid, “It depends where the food goes,” Pleschner-Steele said. “Squid are pretty voracious predators. When we have typical cooler upwelled water that is more nutrient rich, we have more squid.”

Squid will devour krill in the deeper offshore areas. As they move closer to shore to spawn, they become “cannibalistic” and eat each other. This may contribute to the resiliency as the ocean ecosystem changes.

Pleshchner-Steele also pointed to the normal cyclical nature of squid populations, saying “Ventura got used to having squid in the summer time.” The strong El Niña in the Pacific created an abnormal situation between 2010 and 2013, and a “decadal squid boom for southern California” led to the seemingly major shifts.  “My guess is to see a return to normal pattern.”

She referred to a research project of CWPA and the California Department of Fish and Wildlife, completed in February, that “saw a bump in the para-larvae numbers” of market squid. She said that is a signal that there is likely to be an uptick in squid number in about nine to 10 months. “Ventura will just have to wait until fall.”